提示:担心找不到本站?在百度搜索 肉文屋 | 也可以直接 收藏本站

输入小说名 可以少字但不要错字

确有情(高干 婚后) 我的小男友(高甜, 1v1) 我爱的你

第76章 对火星轨道变化问题的最后解释

      作者君在作品相关中其实已经解释过这个问题。

    不过仍然有人质疑——“你说得太含糊了”,“火星轨道的变化比你想象要大得多!”

    那好吧,既然作者君的简单解释不够有力,那咱们就看看严肃的东西,反正这本书写到现在,嚷嚷着本书bug一大堆,用初高中物理在书中挑刺的人也不少。

    以下是文章内容:

    long-termintegrationsandstabilityofplanetaryorbitsinoursolarsystem

    abstract

    wepresenttheresultsofverylong-termnumericalintegrationsofplanetaryorbitalmotionsover109-yrtime-spansincludingallnineplanets.aquickinspectionofournumericaldatashowsthattheplanetarymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-span.acloserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialplanetarymotion,especiallythatofmercury.thebehaviouroftheeccentricityofmercuryinourintegrationsisqualitativelysimilartotheresultsfromjacqueslaskar'ssecularperturbationtheory(e.g.emax~0.35over~±4gyr).however,therearenoapparentsecularincreasesofeccentricityorinclinationinanyorbitalelementsoftheplanets,whichmayberevealedbystilllonger-termnumericalintegrations.wehavealsoperformedacoupleoftrialintegrationsincludingmotionsoftheouterfiveplanetsoverthedurationof±5x1010yr.theresultindicatesthatthethreemajorresonancesintheneptune–plutosystemhavebeenmaintainedoverthe1011-yrtime-span.

    1introduction

    1.1definitionoftheproblem

    thequestionofthestabilityofoursolarsystemhasbeendebatedoverseveralhundredyears,sincetheeraofnewton.theproblemhasattractedmanyfamousmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-lineardynamicsandchaostheory.however,wedonotyethaveadefiniteanswertothequestionofwhetheroursolarsystemisstableornot.thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusedinrelationtotheproblemofplanetarymotioninthesolarsystem.actuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofoursolarsystem.

    amongmanydefinitionsofstability,hereweadoptthehilldefinition(gladman1993):actuallythisisnotadefinitionofstability,butofinstability.wedefineasystemasbecomingunstablewhenacloseencounteroccurssomewhereinthesystem,startingfromacertaininitialconfiguration(chambers,wetherill&ito&&tanikawa1999).asystemisdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthelargerhillradius.otherwisethesystemisdefinedasbeingstable.henceforwardwestatethatourplanetarysystemisdynamicallystableifnocloseencounterhappensduringtheageofoursolarsystem,about±5gyr.incidentally,thisdefinitionmaybereplacedbyoneinwhichanoccurrenceofanyorbitalcrossingbetweeneitherofapairofplanetstakesplace.thisisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinplanetaryandprotoplanetarysystems(yoshinaga,kokubo&&makino1999).ofcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheneptune–plutosystem.

    1.2previousstudiesandaimsofthisresearch

    inadditiontothevaguenessoftheconceptofstability,theplanetsinoursolarsystemshowacharactertypicalofdynamicalchaos(sussman&&wisdom1988,1992).thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlapping(murray&lecar,franklin&&holman2001).however,itwouldrequireintegratingoveranensembleofplanetarysystemsincludingallnineplanetsforaperiodcoveringseveral10gyrtothoroughlyunderstandthelong-termevolutionofplanetaryorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions.

    fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonlytheouterfiveplanets(sussman&kinoshita&&nakai1996).thisisbecausetheorbitalperiodsoftheouterplanetsaresomuchlongerthanthoseoftheinnerfourplanetsthatitismucheasiertofollowthesystemforagivenintegrationperiod.atpresent,thelongestnumericalintegrationspublishedinjournalsarethoseofduncan&&lissauer(1998).althoughtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossonthestabilityofplanetaryorbits,theyperformedmanyintegrationscoveringupto~1011yroftheorbitalmotionsofthefourjovianplanets.theinitialorbitalelementsandmassesofplanetsarethesameasthoseofoursolarsysteminduncan&&lissauer'spaper,buttheydecreasethemassofthesungraduallyintheirnumericalexperiments.thisisbecausetheyconsidertheeffectofpost-main-sequencesolarmasslossinthepaper.consequently,theyfoundthatthecrossingtime-scaleofplanetaryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseofthesun.whenthemassofthesunisclosetoitspresentvalue,thejovianplanetsremainstableover1010yr,orperhapslonger.duncan&&lissaueralsoperformedfoursimilarexperimentsontheorbitalmotionofsevenplanets(venustoneptune),whichcoveraspanof~109yr.theirexperimentsonthesevenplanetsarenotyetcomprehensive,butitseemsthattheterrestrialplanetsalsoremainstableduringtheintegrationperiod,maintainingalmostregularoscillations.

    ontheotherhand,inhisaccuratesemi-analyticalsecularperturbationtheory(laskar1988),laskarfindsthatlargeandirregularvariationscanappearintheeccentricitiesandinclinationsoftheterrestrialplanets,especiallyofmercuryandmarsonatime-scaleofseveral109yr(laskar1996).theresultsoflaskar'ssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations.

    inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrationsonallnineplanetaryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5x1010yr.thetotalelapsedtimeforallintegrationsismorethan5yr,usingseveraldedicatedpcsandworkstations.oneofthefundamentalconclusionsofourlong-termintegrationsisthatsolarsystemplanetarymotionseemstobestableintermsofthehillstabilitymentionedabove,atleastoveratime-spanof±4gyr.actually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbythehillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltheplanetaryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,thoughplanetarymotionsarestochastic.sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityofsolarsystemplanetarymotion.forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofdelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations.

    insection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations.section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations.verylong-termstabilityofsolarsystemplanetarymotionisapparentbothinplanetarypositionsandorbitalelements.aroughestimationofnumericalerrorsisalsogiven.section4goesontoadiscussionofthelongest-termvariationofplanetaryorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit.insection5,wepresentasetofnumericalintegrationsfortheouterfiveplanetsthatspans±5x1010yr.insection6wealsodiscussthelong-termstabilityoftheplanetarymotionanditspossiblecause.

    2descriptionofthenumericalintegrations

    (本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

    2.3numericalmethod

    weutilizeasecond-orderwisdom–holmansymplecticmapasourmainintegrationmethod(wisdom&kinoshita,yoshida&&nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(saha&&tremaine1992,1994).

    thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(n±1,2,3),whichisabout111oftheorbitalperiodoftheinnermostplanet(mercury).asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinsussman&&wisdom(1988,7.2d)andsaha&&tremaine(1994,22532d).weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-offerrorinthecomputationprocesses.inrelationtothis,wisdom&&holman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,110.83oftheorbitalperiodofjupiter.theirresultseemstobeaccurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.however,sincetheeccentricityofjupiter(~0.05)ismuchsmallerthanthatofmercury(~0.2),weneedsomecarewhenwecomparetheseintegrationssimplyintermsofstepsizes.

    intheintegrationoftheouterfiveplanets(f±),wefixedthestepsizeat400d.

    weadoptgauss'fandgfunctionsinthesymplecticmaptogetherwiththethird-orderhalleymethod(danby1992)asasolverforkeplerequations.thenumberofmaximumiterationswesetinhalley'smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.

    theintervalofthedataoutputis200000d(~547yr)forthecalculationsofallnineplanets(n±1,2,3),andabout8000000d(~21903yr)fortheintegrationoftheouterfiveplanets(f±).

    althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadcompletedallthecalculations.seesection4.1formoredetail.

    2.4errorestimation

    2.4.1relativeerrorsintotalenergyandangularmomentum

    accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.theaveragedrelativeerrorsoftotalenergy(~10?9)andoftotalangularmomentum(~10?11)haveremainednearlyconstantthroughouttheintegrationperiod(fig.1).thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore.

    relativenumericalerrorofthetotalangularmomentumδaa0andthetotalenergyδee0inournumericalintegrationsn±1,2,3,whereδeandδaaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,ande0anda0aretheirinitialvalues.thehorizontalunitisgyr.

    notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.intheupperpaneloffig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-eprecision.

    2.4.2errorinplanetarylongitudes

    sincethesymplecticmapspreservetotalenergyandtotalangularmomentumofn-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i.e.theerrorinplanetarylongitudes.toestimatethenumericalerrorintheplanetarylongitudes,weperformedthefollowingprocedures.wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainintegrations.forthispurpose,weperformedamuchmoreaccurateintegrationwithastepsizeof0.125d(164ofthemainintegrations)spanning3x105yr,startingwiththesameinitialconditionsasinthen?1integration.weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofplanetaryorbitalevolution.next,wecomparethetestintegrationwiththemainintegration,n?1.fortheperiodof3x105yr,weseeadifferenceinmeananomaliesoftheearthbetweenthetwointegrationsof~0.52°(inthecaseofthen?1integration).thisdifferencecanbeextrapolatedtothevalue~8700°,about25rotationsofearthafter5gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap.similarly,thelongitudeerrorofplutocanbeestimatedas~12°.thisvalueforplutoismuchbetterthantheresultinkinoshita&&nakai(1996)wherethedifferenceisestimatedas~60°.

    3numericalresults–i.glanceattherawdata

    inthissectionwebrieflyreviewthelong-termstabilityofplanetaryorbitalmotionthroughsomesnapshotsofrawnumericaldata.theorbitalmotionofplanetsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplanetstookplace.

    3.1generaldescriptionofthestabilityofplanetaryorbits

    first,webrieflylookatthegeneralcharacterofthelong-termstabilityofplanetaryorbits.ourinterestherefocusesparticularlyontheinnerfourterrestrialplanetsforwhichtheorbitaltime-scalesaremuchshorterthanthoseoftheouterfiveplanets.aswecanseeclearlyfromtheplanarorbitalconfigurationsshowninfigs2and3,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,whichspansseveralgyr.thesolidlinesdenotingthepresentorbitsoftheplanetsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).thisindicatesthatthroughouttheentireintegrationperiodthealmostregularvariationsofplanetaryorbitalmotionremainnearlythesameastheyareatpresent.

    verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsn±1.theaxesunitsareau.thexy-planeissettotheinvariantplaneofsolarsystemtotalangularmomentum.(a)theinitialpartofn+1(t=0to0.0547x109yr).(b)thefinalpartofn+1(t=4.9339x108to4.9886x109yr).(c)theinitialpartofn?1(t=0to?0.0547x109yr).(d)thefinalpartofn?1(t=?3.9180x109to?3.9727x109yr).ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47x107yr.solidlinesineachpaneldenotethepresentorbitsofthefourterrestrialplanets(takenfromde245).

    thevariationofeccentricitiesandorbitalinclinationsfortheinnerfourplanetsintheinitialandfinalpartoftheintegrationn+1isshowninfig.4.asexpected,thecharacterofthevariationofplanetaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforvenus,earthandmars.theelementsofmercury,especiallyitseccentricity,seemtochangetoasignificantextent.thisispartlybecausetheorbitaltime-scaleoftheplanetistheshortestofalltheplanets,whichleadstoamorerapidorbitalevolutionthanotherplanets;theinnermostplanetmaybenearesttoinstability.thisresultappearstobeinsomeagreementwithlaskar's(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofmercuryonatime-scaleofseveral109yr.however,theeffectofthepossibleinstabilityoftheorbitofmercurymaynotfatallyaffecttheglobalstabilityofthewholeplanetarysystemowingtothesmallmassofmercury.wewillmentionbrieflythelong-termorbitalevolutionofmercurylaterinsection4usinglow-passfilteredorbitalelements.

    theorbitalmotionoftheouterfiveplanetsseemsrigorouslystableandquiteregularoverthistime-span(seealsosection5).

    3.2time–frequencymaps

    althoughtheplanetarymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,thechaoticnatureofplanetarydynamicscanchangetheoscillatoryperiodandamplitudeofplanetaryorbitalmotiongraduallyoversuchlongtime-spans.evensuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofearth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(cf.berger1988).

    togiveanoverviewofthelong-termchangeinperiodicityinplanetaryorbitalmotion,weperformedmanyfastfouriertransformations(ffts)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–frequencymaps.thespecificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorlaskar's(1990,1993)frequencyanalysis.

    dividethelow-passfilteredorbitaldataintomanyfragmentsofthesamelenh.thelenhofeachdatasegmentshouldbeamultipleof2inordertoapplythefft.

    eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti+t,thenextdatasegmentrangesfromti+δt≤ti+δt+t,whereδt?t.wecontinuethisdivisionuntilwereachacertainnumbernbywhichtn+treachesthetotalintegrationlenh.

    weapplyanffttoeachofthedatafragments,andobtainnfrequencydiagrams.

    ineachfrequencydiagramobtainedabove,thestrenhofperiodicitycanbereplacedbyagrey-scale(orcolour)chart.

    weperformthereplacement,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegration.thehorizontalaxisofthesenewgraphsshouldbethetime,i.e.thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n).theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements.

    wehaveadoptedanfftbecauseofitsoverwhelmingspeed,sincetheamountofnumericaldatatobedecomposedintofrequencycomponentsisterriblyhuge(severaltensofgbytes).

    atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasfig.5,whichshowsthevariationofperiodicityintheeccentricityandinclinationofearthinn+2integration.infig.5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit.wecanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofearthonlychangesslightlyovertheentireperiodcoveredbythen+2integration.thisnearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplanets,althoughtypicalfrequenciesdifferplanetbyplanetandelementbyelement.

    4.2long-termexchangeoforbitalenergyandangularmomentum

    wecalculateverylong-periodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfiltereddelaunayelementsl,g,h.gandhareequivalenttotheplanetaryorbitalangularmomentumanditsverticalcomponentperunitmass.lisrelatedtotheplanetaryorbitalenergyeperunitmassase=?μ22l2.ifthesystemiscompletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant.non-linearityintheplanetarysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain.theamplitudeofthelowest-frequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually.however,suchasymptomofinstabilityisnotprominentinourlong-termintegrations.

    infig.7,thetotalorbitalenergyandangularmomentumofthefourinnerplanetsandallnineplanetsareshownforintegrationn+2.theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedase-e0),totalangularmomentum(g-g0),andtheverticalcomponent(h-h0)oftheinnerfourplanetscalculatedfromthelow-passfiltereddelaunayelements.e0,g0,h0denotetheinitialvaluesofeachquantity.theabsolutedifferencefromtheinitialvaluesisplottedinthepanels.thelowerthreepanelsineachfigureshowe-e0,g-g0andh-h0ofthetotalofnineplanets.thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovianplanets.

    comparingthevariationsofenergyandangularmomentumoftheinnerfourplanetsandallnineplanets,itisapparentthattheamplitudesofthoseoftheinnerplanetsaremuchsmallerthanthoseofallnineplanets:theamplitudesoftheouterfiveplanetsaremuchlargerthanthoseoftheinnerplanets.thisdoesnotmeanthattheinnerterrestrialplanetarysubsystemismorestablethantheouterone:thisissimplyaresultoftherelativesmallnessofthemassesofthefourterrestrialplanetscomparedwiththoseoftheouterjovianplanets.anotherthingwenoticeisthattheinnerplanetarysubsystemmaybecomeunstablemorerapidlythantheouteronebecauseofitsshorterorbitaltime-scales.thiscanbeseeninthepanelsdenotedasinner4infig.7wherethelonger-periodicandirregularoscillationsaremoreapparentthaninthepanelsdenotedastotal9.actually,thefluctuationsintheinner4panelsaretoalargeextentasaresultoftheorbitalvariationofthemercury.however,wecannotneglectthecontributionfromotherterrestrialplanets,aswewillseeinsubsequentsections.

    4.4long-termcouplingofseveralneighbouringplanetpairs

    letusseesomeindividualvariationsofplanetaryorbitalenergyandangularmomentumexpressedbythelow-passfiltereddelaunayelements.figs10and11showlong-termevolutionoftheorbitalenergyofeachplanetandtheangularmomentuminn+1andn?2integrations.wenoticethatsomeplanetsformapparentpairsintermsoforbitalenergyandangularmomentumexchange.inparticular,venusandearthmakeatypicalpair.inthefigures,theyshownegativecorrelationsinexchangeofenergyandpositivecorrelationsinexchangeofangularmomentum.thenegativecorrelationinexchangeoforbitalenergymeansthatthetwoplanetsformacloseddynamicalsystemintermsoftheorbitalenergy.thepositivecorrelationinexchangeofangularmomentummeansthatthetwoplanetsaresimultaneouslyundercertainlong-termperturbations.candidatesforperturbersarejupiterandsaturn.alsoinfig.11,wecanseethatmarsshows'itivecorrelationintheangularmomentumvariationtothevenus–earthsystem.mercuryexhibitscertainnegativecorrelationsintheangularmomentumversusthevenus–earthsystem,whichseemstobeareactioncausedbytheconservationofangularmomentumintheterrestrialplanetarysubsystem.

    itisnotclearatthemomentwhythevenus–earthpairexhibitsanegativecorrelationinenergyexchangeand'itivecorrelationinangularmomentumexchange.wemaypossiblyexplainthisthroughobservingthegeneralfactthattherearenoseculartermsinplanetarysemimajoraxesuptosecond-orderperturbationtheories(cf.brouwer&boccaletti&&pucacco1998).thismeansthattheplanetaryorbitalenergy(whichisdirectlyrelatedtothesemimajoraxisa)mightbemuchlessaffectedbyperturbingplanetsthanistheangularmomentumexchange(whichrelatestoe).hence,theeccentricitiesofvenusandearthcanbedisturbedeasilybyjupiterandsaturn,whichresultsin'itivecorrelationintheangularmomentumexchange.ontheotherhand,thesemimajoraxesofvenusandeartharelesslikelytobedisturbedbythejovianplanets.thustheenergyexchangemaybelimitedonlywithinthevenus–earthpair,whichresultsinanegativecorrelationintheexchangeoforbitalenergyinthepair.

    asfortheouterjovianplanetarysubsystem,jupiter–saturnanduranus–neptuneseemtomakedynamicalpairs.however,thestrenhoftheircouplingisnotasstrongcomparedwiththatofthevenus–earthpair.

    5±5x1010-yrintegrationsofouterplanetaryorbits

    sincethejovianplanetarymassesaremuchlargerthantheterrestrialplanetarymasses,wetreatthejovianplanetarysystemasanindependentplanetarysystemintermsofthestudyofitsdynamicalstability.hence,weaddedacoupleoftrialintegrationsthatspan±5x1010yr,includingonlytheouterfiveplanets(thefourjovianplanetspluspluto).theresultsexhibittherigorousstabilityoftheouterplanetarysystemoverthislongtime-span.orbitalconfigurations(fig.12),andvariationofeccentricitiesandinclinations(fig.13)showthisverylong-termstabilityoftheouterfiveplanetsinboththetimeandthefrequencydomains.althoughwedonotshowmapshere,thetypicalfrequencyoftheorbitaloscillationofplutoandtheotherouterplanetsisalmostconstantduringtheseverylong-termintegrationperiods,whichisdemonstratedinthetime–frequencymapsonourwebpage.

    inthesetwointegrations,therelativenumericalerrorinthetotalenergywas~10?6andthatofthetotalangularmomentumwas~10?10.

    5.1resonancesintheneptune–plutosystem

    kinoshita&&nakai(1996)integratedtheouterfiveplanetaryorbitsover±5.5x109yr.theyfoundthatfourmajorresonancesbetweenneptuneandplutoaremaintainedduringthewholeintegrationperiod,andthattheresonancesmaybethemaincausesofthestabilityoftheorbitofpluto.themajorfourresonancesfoundinpreviousresearchareasfollows.inthefollowingdescription,λdenotesthemeanlongitude,Ωisthelongitudeoftheascendingnodeand?isthelongitudeofperihelion.subscriptspandndenoteplutoandneptune.

    meanmotionresonancebetweenneptuneandpluto(3:2).thecriticalargumentθ1=3λp?2λn??plibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2x104yr.

    theargumentofperihelionofplutowp=θ2=?p?Ωplibratesaround90°withaperiodofabout3.8x106yr.thedominantperiodicvariationsoftheeccentricityandinclinationofplutoaresynchronizedwiththelibrationofitsargumentofperihelion.thisisanticipatedinthesecularperturbationtheoryconstructedbykozai(1962).

    thelongitudeofthenodeofplutoreferredtothelongitudeofthenodeofneptune,θ3=Ωp?Ωn,circulatesandtheperiodofthiscirculationisequaltotheperiodofθ2libration.whenθ3becomeszero,i.e.thelongitudesofascendingnodesofneptuneandplutooverlap,theinclinationofplutobecomesmaximum,theeccentricitybecomesminimumandtheargumentofperihelionbecomes90°.whenθ3becomes180°,theinclinationofplutobecomesminimum,theeccentricitybecomesmaximumandtheargumentofperihelionbecomes90°again.williams&&benson(1971)anticipatedthistypeofresonance,laterconfirmedbymilani,nobili&&carpino(1989).

    anargumentθ4=?p??n+3(Ωp?Ωn)libratesaround180°withalongperiod,~5.7x108yr.

    inournumericalintegrations,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticalargumentsθ1,θ2,θ3remainsimilarduringthewholeintegrationperiod(figs14–16).however,thefourthresonance(iv)appearstobedifferent:thecriticalargumentθ4alternateslibrationandcirculationovera1010-yrtime-scale(fig.17).thisisaninterestingfactthatkinoshita&&nakai's(1995,1996)shorterintegrationswerenotabletodisclose.

    6discussion

    whatkindofdynamicalmechanismmaintainsthislong-termstabilityoftheplanetarysystem?wecanimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelong-termstability.first,thereseemtobenosignificantlower-orderresonances(meanmotionandsecular)betweenanypairamongthenineplanets.jupiterandsaturnareclosetoa5:2meanmotionresonance(thefamous‘greatinequality’),butnotjustintheresonancezone.higher-orderresonancesmaycausethechaoticnatureoftheplanetarydynamicalmotion,buttheyarenotsostrongastodestroythestableplanetarymotionwithinthelifetimeoftherealsolarsystem.thesecondfeature,whichwethinkismoreimportantforthelong-termstabilityofourplanetarysystem,isthedifferenceindynamicaldistancebetweenterrestrialandjovianplanetarysubsystems(ito&&tanikawa1999,2001).whenwemeasureplanetaryseparationsbythemutualhillradii(r_),separationsamongterrestrialplanetsaregreaterthan26rh,whereasthoseamongjovianplanetsarelessthan14rh.thisdifferenceisdirectlyrelatedtothedifferencebetweendynamicalfeaturesofterrestrialandjovianplanets.terrestrialplanetshavesmallermasses,shorterorbitalperiodsandwiderdynamicalseparation.theyarestronglyperturbedbyjovianplanetsthathavelargermasses,longerorbitalperiodsandnarrowerdynamicalseparation.jovianplanetsarenotperturbedbyanyothermassivebodies.

    thepresentterrestrialplanetarysystemisstillbeingdisturbedbythemassivejovianplanets.however,thewideseparationandmutualinteractionamongtheterrestrialplanetsrendersthedisturbanceineffective;thedegreeofdisturbancebyjovianplanetsiso(ej)(orderofmagnitudeoftheeccentricityofjupiter),sincethedisturbancecausedbyjovianplanetsisaforcedoscillationhavinganamplitudeofo(ej).heighteningofeccentricity,forexampleo(ej)~0.05,isfarfromsufficienttoprovokeinstabilityintheterrestrialplanetshavingsuchawideseparationas26rh.thusweassumethatthepresentwidedynamicalseparationamongterrestrialplanets(&;26rh)isprobablyoneofthemostsignificantconditionsformaintainingthestabilityoftheplanetarysystemovera109-yrtime-span.ourdetailedanalysisoftherelationshipbetweendynamicaldistancebetweenplanetsandtheinstabilitytime-scaleofsolarsystemplanetarymotionisnowon-going.

    althoughournumericalintegrationsspanthelifetimeofthesolarsystem,thenumberofintegrationsisfarfromsufficienttofilltheinitialphasespace.itisnecessarytoperformmoreandmorenumericalintegrationstoconfirmandexamineindetailthelong-termstabilityofourplanetarydynamics.

    ——以上文段引自ito,t.&tanikawa,k.long-termintegrationsandstabilityofplanetaryorbitsinoursolarsystem.mon.not.r.astron.soc.336,483–500(2002)

    这只是作者君参考的一篇文章,关于太阳系的稳定性。

    还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。